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Abstract—Navigation of an unmanned aerial vehicle (UAV) to
reach a desired waypoint with provable guarantees in global
navigation satellite system (GNSS)-denied environments is con-
sidered. The UAV is assumed to have an unknown initial state
(position, velocity, and time) and the environment is assumed
to possess multiple terrestrial signals of opportunity (SOPs)
transmitters with unknown states (position and time) and one
anchor SOP whose states are known. The UAV makes pseu-
dorange measurements to all SOPs to estimate its own states
simultaneously with the states of the unknown SOPs. The way-
point navigation problem is formulated as a greedy (i.e., one-step
look-ahead) multi-objective motion planning (MOMP) strategy,
which guarantees that the UAV gets to within a user-specified
distance of the waypoint with a user-specified confidence. The
MOMP strategy balances two objectives: (i) navigating to the
waypoint and (ii) reducing UAV’s position estimate uncertainty.
It is demonstrated that in such an environment, formulating the
waypoint navigation problem in a so-called “naive” fashion by
heading directly to the waypoint would result in failing to reach
the waypoint. This is due to poor estimability of the environment.
In contrast, the MOMP strategy guarantees (in a probabilistic
sense) reaching the waypoint. Monte Carlo simulation results are
presented showing that the MOMP strategy achieves the desired
objective with 95% success rate compared to a 36% success rate
with the naive approach. Experimental results are presented for
a UAV navigating to a waypoint in a cellular SOP environment,
where the MOMP strategy successfully reaches the waypoint,
while the naive strategy fails to do so.

Index Terms—Waypoint navigation, motion planning, un-
manned aerial vehicles, GNSS-denied, signals of opportunity.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly being

used in a wide range of civilian and military applications, in

which it is too costly or dangerous to send human-operated

vehicles. These applications include: search and rescue, fire

fighting, traffic monitoring, agriculture, delivery, and surveil-

lance. The majority of missions in these applications require

the UAV to fly to specified waypoints efficiently and reliably

in dynamic and uncertain environments. Reaching these way-

points reliably with no human-in-the-loop requires the UAV to

continuously maintain its position in space and time within the

environment using an accurate and robust navigation system.
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Today’s UAV navigation systems essentially rely on global

navigation satellite system (GNSS) signals. However, it is

well-known that GNSS signals can become unreliable in en-

vironments where UAVs conduct missions: GNSS signals get

highly attenuated in deep urban canyons and under canopies

[1] and are susceptible to jamming and malicious spoofing [2].

To alleviate these shortcomings during GNSS outages, UAV

navigation systems typically supplement GNSS receivers with

additional sensors (e.g., inertial measurement units (IMUs) [3],

cameras [4], and lasers [5]). However, after prolonged GNSS

unavailability periods, the UAV’s position estimation error

and estimation uncertainty could accumulate to unacceptable

levels, compromising the safety and success of the UAV’s

mission. While the accumulation rate of UAV positioning error

could be reduced by incorporating additional sensors into the

UAV’s sensor-suite, this could violate cost, size, weight, and

power (CSWaP) constraints.

A more elegant and CSWaP-efficient approach is to detect

and map existing features in the unknown environment and to

prescribe the UAV’s trajectory to minimize the UAV’s states

uncertainty, which is estimated using measurements drawn

from the mapped features [6]. Fortunately, there is plenitude

of features in locales of interest, which a UAV may exploit

in the absence of GNSS signals in order to autonomously

navigate to the waypoint (e.g., trees, light poles, buildings,

etc.). This is typically achieved via the well-studied problem

of simultaneous localization and mapping (SLAM) [7]–[9] in

the robotics literature.

Another class of features, which could be exploited in

GNSS-denied environments is signals of opportunity (SOPs)

[10]–[12]. SOPs are ambient radio signals, which are not

intended as navigation sources, e.g., cellular signals [13]–[17],

digital television signals [18], [19], AM/FM radio signals [20],

[21], and low Earth orbit satellite (LEO) signals [22]–[25].

SOPs have been exploited to produce navigation solutions in

a standalone fashion or as an aiding source for an INS in the

absence of GNSS signals [26]. Meter-level accurate navigation

has been demonstrated on ground vehicles with terrestrial

cellular and television SOPs [27]–[29], while sub-meter-level

accurate navigation has been demonstrated on UAVs [30].

The problem of navigating with unknown SOPs is termed

radio SLAM [26] or variations thereof [31]. While the radio

SLAM problem shares similarities with the robotics SLAM

problem, radio SLAM possesses specific complexities due to

the dynamic and stochastic nature of the spatiotemporal state

space. In particular, unlike the static features comprising the

robotics SLAM environment, SOPs are equipped with non-
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ideal clocks, whose error (bias and drift) is dynamic and

stochastic. What is more, the number of SOPs could be

limited compared to the plenitude of static features in the

robotics SLAM environment, and the initial uncertainty around

the SOP states could be large. This makes the radio SLAM

environment poorly estimable, and the coupling between the

control objective (motion planning towards the waypoint) and

sensing/estimation objective (motion planning to gather the

“best” information from SOPs) evermore important. Even for

the simple objective of achieving situational awareness in these

environments (i.e., estimating the UAV’s states simultaneously

with estimating the SOPs’ states) without requiring the UAV

to reach a desired waypoint, it was shown that moving in a

random or an open-loop fashion would cause the UAV to get

lost (exhibited by filter divergence) [32].

Initial work on greedy (i.e., one-step look-ahead) motion

planning for optimal information gathering in radio SLAM en-

vironments was conducted in [32], and receding horizon (i.e.,

multi-step look-ahead) trajectory optimization was studied in

[33]. While the proposed approaches were shown to maintain

localization accuracy and map quality by prescribing optimal

trajectories, they did not take into consideration a desired

waypoint as part of the UAV’s mission. Waypoint navigation

brings a second objective that could contradict with the

objective of maintaining a good estimate of the UAV’s states.

In contrast to previous work, this paper considers the problem

of UAV greedy motion planning in a radio SLAM environment

to reach a desired waypoint with provable guarantees.

The contributions of this paper are as follow. First, a multi-

objective motion planning (MOMP) strategy is formulated.

Three cost functions that reflect the two objectives; namely,

(i) mission completion and (ii) uncertainty reduction; are

derived using probabilistic and information theoretic metrics.

It is shown that under certain conditions, these cost functions

are equivalent. Second, the cost function is modified by

introducing weights for the terms pertaining to each objective,

and a method to adaptively set the weights online is proposed.

This adaptation is shown to be essential for successful mission

completion. Third, the paper identifies a stopping criterion

that guarantees that the UAV is within a desired distance to

the waypoint with a desired confidence, declaring the mission

as complete. Fourth, Monte Carlo simulations are presented

showing that the MOMP strategy achieves the desired ob-

jective with 95% success rate compared to a 36% success

rate with a naive approach (i.e., one which prescribes the

shortest trajectory to the waypoint without considering the

UAV’s position uncertainty). Fifth, experimental results are

presented for a UAV navigating to a waypoint in a cellular SOP

environment, where the MOMP strategy successfully reaches

the waypoint, while the naive strategy fails to do so.

The remainder of this paper is organized as follows. Section

II summarizes relevant work in the literature. Section III

formulates the MOMP problem and describes the dynamics

model of the UAV and SOPs, the measurement model, and the

estimator model. Section IV develops the proposed MOMP

strategy. Section V presents simulation results comparing

naive and MOMP strategies. Section VI presents experimental

results of a UAV exploiting signals from unknown cellular

SOP transmitters to navigate to a waypoint using the MOMP

strategy. Section VII gives concluding remarks.

II. RELATED WORK

Waypoint navigation has been widely studied over the last

decade with the development of autonomous aerial vehicles

[34] and mobile robots [35]. To achieve better performance

in waypoint navigation, GPS-based control systems were

adopted, whether in a standalone fashion [36] or in a differ-

ential fashion with an inertial navigation system (INS) [37].

Other approaches relied on fusing measurements from an

omnidirectional camera and a laser rangefinder in a Kalman

filter for outdoor waypoint navigation [38]. The waypoint

navigation problem has been formulated as an optimal control

problem [39], which could be solved by linear quadratic

regulator (LQR) [40], genetic algorithm [41], or a combination

of local and global planning [42]. When the optimization

problem becomes multi-objective, particle swarm optimization

[43] or Pareto-optimality [44] has been adopted. Although

the aforementioned methods achieved accurate waypoint nav-

igation, they did not take into account the effect of motion

on the estimation performance. The effect of having large

estimation error in waypoint navigation may have detrimental

consequences.

Motion planning approaches that optimize the path length

towards a waypoint, while taking into account sensor uncer-

tainties have been investigated in recent literature. However,

sensors can provide either local or global information of

the vehicle’s position. In the case of the former, the motion

planning algorithm accounts for the sensor uncertainty instead

of optimizing for sensor uncertainty [45], [46]. In the case of

the latter, path planning is affected by the predicted quality

of the navigation solution which changes throughout the envi-

ronment. Ray-tracing approaches for path planning were used

to improve channel characterization and enhance positioning

performance for autonomous ground vehicles [47]–[50] or

UAVs [51]–[53], navigating with GNSS and/or SOPs. In

[54], a method to predict the state uncertainty of a UAV

in the presence of uncertain GNSS positioning biases using

stochastic reachability analysis was proposed. A framework

that guarantees that the estimation error remains less than

the safety threshold for ground vehicles while navigating

towards a waypoint was presented in [55]. While effective,

these approaches rely on known maps to pre-calculate the cost

function and perform optimization.

In robotics, sample-based approaches using the belief space

of the robot’s states are common for motion planning in-

volving uncertainty from localization and motion. One of the

sample-based methods for waypoint reaching that considers

state uncertainties is the belief roadmap [56], which builds a

probabilistic roadmap in a robot’s state space. It propagates

beliefs over the roadmap using an extended Kalman filter

(EKF) and plans a path of minimum goal-state uncertainty.

A modification of the sampling method was proposed by [57]

in which minimizing the maximum value of its uncertainty

metric encountered during the traversal of a path to make it

more efficient, while intermittent sensing was considered in



0018-9251 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2021.3103140, IEEE
Transactions on Aerospace and Electronic Systems

[58]. This approach was extended by taking visual-inertial

sensing and laser scanners into consideration in [59] and

[60], respectively. A rollout-policy-based algorithm enabling

online replanning in an efficient manner in belief space to

achieve simultaneous localization and planning in dynamic

environments with the presence of large disturbances was

proposed in [61]. However, for these sample-based approaches,

the sampling method and numerical burden significantly affect

efficiency and performance, as they require the calculation

and evaluation of all the potential paths between the start

point and the destination in each round. Several approaches

in the literature formulated the planning as an optimization

problem, constrained by uncertainty. For example, the sampled

paths were constrained by the estimated error covariance

in [62]. Similarly, [63] applied this constraint in particle

swarm optimization to find the optimal paths satisfying the

covariance bound. Localizability was also adopted as a con-

straint to determine possible regions and the path length was

optimized within these regions for a an autonomous vehicle

[64]. Although this paradigm is formulated as a constrained

optimization problem, the existence of an optimal solution is

not always guaranteed, as the constraint may contradict the

primary goal. In contrast to previous work, this paper considers

opportunistic waypoint navigation in a GNSS-denied via radio

SLAM. To achieve this objective, the paper formulates a

computationally efficient MOMP strategy, which guarantees

(in a probabilistic sense) reaching the waypoint.

III. PROBLEM FORMULATION AND MODEL DESCRIPTION

This section formulates the MOMP problem, describes the

control system model of the UAV, presents the dynamics and

measurement model of the UAV and SOPs, and discusses the

EKF model for estimating the UAV’s and SOPs’ states.

A. Problem Formulation

This paper extends previous work on motion planning by

developing a MOMP strategy for a UAV navigating with

unknown SOPs, which balances two objectives: (i) navigating

to a waypoint and (ii) minimizing UAV’s position uncer-

tainty. The following problem is considered. A UAV has been

dropped into a GNSS-denied environment with minimal a

priori knowledge of its own states. As shown in Fig. 1, the

environment consists of multiple unknown SOPs, from which

the UAV draws and fuses pseudoranges in order to estimate

its own states and the states of the unknown SOPs through

an EKF. The UAV is tasked with navigating to a waypoint

position and is required to arrive at the waypoint within a

specified distance with a specified confidence. The estimation

uncertainty is heavily dependent on the relative geometry

between the UAV and the SOPs. Therefore, the trajectory taken

by the UAV to arrive at the waypoint affects the uncertainty

in its position estimate along the way. When the uncertainty

is very large, the EKF risks diverging, which in turn causes

the UAV to move away from the waypoint, as illustrated in

Fig. 1. To avoid such behavior, a more complex trajectory

is designed to maintain a small uncertainty along the UAV

trajectory, which guarantees to reach the waypoint. This is also

illustrated in Fig. 1. Section IV develops the MOMP strategy.
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Fig. 1. A UAV is deployed into an uncertain position in a GNSS-denied
environment and is tasked with navigating to a waypoint. A naive strategy
(shown in purple) would have the UAV move directly to the waypoint position,
risking large position estimation errors, which would cause missing the
waypoint. A MOMP strategy (shown in blue) would have the UAV prescribe a
more complex trajectory, which balances two objectives to maintain a reliable
position estimate: (i) moving to the waypoint and (ii) minimizing the UAV
position uncertainty. The MOMP strategy guarantees (in a probabilistic sense)
reaching the waypoint.

B. UAV Control System Model

This paper considers motion planning for quadrotor UAVs.

Typical quadrotor controllers require full state feedback, which

consists of the UAV’s three-dimensional (3-D) pose (3-D

position and orientation) and its first time derivative (3-D

linear and angular velocities). UAVs are typically equipped

with a suite of sensors to perform pose estimation, mainly a

GNSS receiver, IMU, barometric pressure sensor or altimeter,

magnetometer, etc. It is worth noting that UAVs rely mainly

on GNSS to produce a position estimate in a global frame,

e.g., Earth-centered Earth-fixed (ECEF) frame. In GNSS-

denied environments, if equipped with the right receivers,

the UAV may draw pseudorange measurements from ambient

SOPs to produce a position estimate in the global frame.

As mentioned in the Introduction, the uncertainty associated

with the SOP-based position estimate heavily depends on the

relative geometry between the UAV and the SOPs. Therefore,

in order to reduce this uncertainty, a motion planning algorithm

is developed to reach the waypoint with a desired confidence.

In addition to state feedback, a desired trajectory is required

to perform UAV pose control. Zero dynamics stabilization

methods were proposed to synthesize full state desired tra-

jectories from desired position and heading trajectories only

[65]. Treating the UAV controller as a black box, the proposed

framework aims at (i) replacing the GNSS receiver with an

EKF estimating the UAV position using SOP pseudoranges

and (ii) perform motion planning to determine the desired

position and heading trajectories that will be passed as an

input to the UAV’s control system. A high-level block diagram

of a typical UAV control system and the proposed system are

shown in Fig. 2. Since the proposed framework uses the UAV’s

control system as a black box, the EKF estimating the UAV’s

state from SOP pseudoranges is formulated independently of

the UAV’s on-board control system. The UAV dynamics model

assumed by the EKF is discussed next.

C. UAV Dynamics Model

For simplicity, this paper assumes a planar environment. Ex-

tensions to three-dimensions (3-D) are straightforward. Such

extension would yield poor estimability of the UAV’s vertical
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Fig. 2. High-level block diagram of the UAV control system. (a) The inner
control loop consists of a standard UAV control loop, where the desired
tracking position and heading angle trajectories are defined by the user. A
zero dynamics stabilizer block synthesizes the tracking trajectories for the
remaining states. (b) In the case of GNSS unavailability (note the absence
of the GNSS receiver), the UAV can rely on SOP measurements to maintain
a position estimate in a global frame. Moreover, motion planning could be
performed to efficiently navigate to a desired waypoint. The additional blocks
pertaining to the proposed motion planning framework for navigating with
SOPs are shown in blue. It is important to note that the proposed approach is
in a fashion where (i) no modifications are needed for the inner control loop
and (ii) the proposed motion planning algorithm automatically computes the
desired trajectories that are input to the inner control loop.

position due to poor geometric diversity of the SOPs’ heights.

In such case, other sensors (e.g., altimeter) could be readily

used.

The state vector of the UAV xr is defined as

xr ,
[

xT

pv, x
T

clk,r

]T

, xpv ,

[

rT

r , ṙ
T

r

]T

, xclk,r ,

[

δtr, δ̇tr

]T

,

where rr ∈ R
2 and ṙr ∈ R

2 are the UAV’s two-dimensional

(2-D) position and velocity, respectively; and δtr ∈ R and

δ̇tr ∈ R are the UAV-mounted receiver’s clock bias and drift,

respectively. The UAV’s position and velocity states xpv will

be assumed to evolve according to a 2-D planar motion model

[66]. Taking the omni-directional flying ability of the multi-

rotor into consideration, the UAV’s nominal continuous-time

control input vector ur, is given by

urc , [ac, θc]
T
,

where ac ∈ R
+ and θc ∈ [−π, π) are the continuous-

time absolute acceleration and corresponding heading angle,

respectively. Note that urc is not the actual control input

applied to the UAV, but is the control input computed by

the motion planning algorithm from which the desired 2-D

position and heading can be computed and input to the UAV

controller, as shown in Fig. 2(b). The desired altitude is set

to be constant. Due to actuation errors and process noise, the

actual continuous-time control input vector will be

ūrc = urc + ũrc ,
[

āc, θ̄c
]T

,

where ũrc ,

[

ãc, θ̃c

]T

, and ãc and θ̃c are uncorrelated, zero-

mean, white random processes with power spectra q̃a and

q̃θ, respectively. The continuous-time state-space model of the

UAV’s position and velocity is formulated as

ẋpv(t) = Apvxpv(t) +Bpvgr[ūrc(t)], (1)

Apv ,

[

02×2 I2×2

02×2 02×2

]

, Bpv ,

[

I2×2

02×2

]

,

gr[ūrc(t)] ,
[

āc(t) cos[θ̄c(t)], āc(t) sin[θ̄c(t)]
]T

,

where 02×2 ∈ R
2×2 is a matrix of zeros, I2×2 ∈ R

2×2 is the

identity matrix, and 02×1 ∈ R
1 is a vector of zeros. Since the

actual control input is unknown, the function gr[ūr(t)] in (1)

is linearized around the nominal input ur(t), yielding

gr[ūrc(t)] ≈ gr[urc(t)] + D̃r(t)ũrc(t), (2)

D̃r(t) ,

[

02×2

D̃a,θ(t)

]

, D̃a,θ(t) ,

[

cos[θc(t)] −ac(t) sin[θc(t)]
sin[θc(t)] ac(t) cos[θc(t)]

]

,

where Dr(t) is the Jacobian matrix of gr[ūrc(t)] with respect

to ūrc(t). Combining (1) and (2) and discretizing at a sampling

interval T assuming zero-order hold of the control input (i.e.,

{urc(t) = urc(kT ) , ur(k), kT ≤ t < (k + 1)T }),

the discrete-time UAV’s position and velocity states can be

modeled as

xpv(k + 1) = Fpvxpv(k) + Γpvgr [ur(k)] +wpv(k),

k = 0, 1, 2, . . . (3)

Fpv,

[

I2×2 T I2×2

02×2 I2×2

]

, Γpv,

[

T 2

2 I2×2

T I2×2

]

, ur(k),

[

a(k)
θ(k)

]

,

where a(k) , ac(kT ) and θ(k) , θc(kT ), and wpv(k) is the

discretized process noise vector, which is a zero-mean white

sequence with covariance Qpv(k) given by

Qpv(k) =

[

T 3

3 Qc(k)
T 2

2 Qc(k)
T 2

2 Qc(k) TQc(k)

]

, (4)

Qc(k) , Da,θ(k)Qa,θD
T

a,θ(k), Qa,θ = diag [q̃a, q̃θ] , (5)

Da,θ(k) , D̃a,θ(kT ) =

[

cos[θ(k)] −a(k) sin[θ(k)]
sin[θ(k)] a(k) cos[θ(k)]

]

. (6)

Furthermore, as in all practical systems, the UAV’s accelera-

tion and velocity are constrained according to
{

a(k) ≤ ar,max,

‖ṙr(k)‖2 ≤ vr,max,
(7)

which, for e , [1 0]
T

, can also be expressed as
{

(

eTur(k)
)2 ≤ a2r,max,

∥

∥gr [ur(k)] +
1
T
ṙr(k)

∥

∥

2

2
≤
(

1
T
vr,max

)2
.

(8)

The UAV-mounted receiver’s clock state xclk,r is modeled

according to the standard double integrator model driven by

process noise, whose discrete-time dynamics are given by

xclk,r(k + 1) = Fclkxclk,r(k) +wclk,r(k), k = 0, 1, 2, . . . ,
(9)
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where wclk,r is a zero-mean white noise sequence with co-

variance Qclk,r given by

Fclk=

[

1 T

0 1

]

, Qclk,r =

[

Sw̃δtr
T + Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

,

where Sw̃δtr
and Sw̃δ̇tr

are the power spectra of the continuous-

time white process noise driving the evolution of the clock bias

and drift, which are approximated with the frequency random

walk coefficient h−2,r and the white frequency coefficient h0,r,

leading to Sw̃δtr
≈ h0,r

2 and Sw̃δ̇tr
≈ 2π2h−2,r.

Combining (3) and (9) yields the discrete-time dynamics of

the UAV’s state vector xr, which is given by

xr(k+1) = Frxr(k)+Γrgr[ur(k)]+wr(k), k = 0, 1, 2, . . . ,
(10)

Fr , diag [Fpv, Fr] , Γr ,
[

ΓT

pv, 02×2

]T

,

and wr ,

[

wT

pv,w
T

clk,r

]T

is the overall process noise covari-

ance, which is a zero-mean white sequence with covariance

Qr = diag
[

Qpv, Qclk,r

]

.

D. SOP Dynamics Model

The environment consists of one fully known anchor SOP,

denoted with a subscript a, and m unknown SOPs. To sat-

isfy the observability condition established in [33], [67], the

knowledge of the state vector of the anchor SOP, denoted xsa ,

is assumed. Note that the UAV’s control inputs ur are with

respect to a global coordinate frame in which the SOPs are

expressed. This requires the UAV to have a priori knowledge

about its orientation with respect to this global coordinate

frame through some sensor (e.g., a magnetometer). Note,

however, that the UAV has no a priori knowledge about its

initial position, velocity, or clock errors (bias and drift). The

jth SOP is modeled as a stationary transmitter with state vector

xsj ,

[

rT
sj , x

T
clk,sj

]T

, xclk,sj ,

[

δtsj , δ̇tsj

]T

,

where rsj ∈ R
2 is the SOP’s planar position and δtsj ∈ R

and δ̇tsj ∈ R are the SOP’s clock bias and drift, respectively.

The SOP’s states are assumed to evolve according to

xsj (k + 1) = Fsxsj (k) +Gswclk,sj (k), (11)

Fs , diag
[

I2×2, Fclk

]

, Gs , [02×2 I2×2]
T
,

where wclk,sj ∈ R
2 is the process noise vector driving the jth

SOP’s clock states and is modeled as a zero-mean white noise

sequence with covariance Qclk,sj , which has the same form

as Qclk,r, except that Sw̃δtr
and Sw̃δ̇tr

are replaced with SOP

clock-specific spectra, Sw̃δts,j
and Sw̃δ̇ts,j

, respectively.

E. Observation Model

The UAV-mounted receiver makes pseudorange measure-

ments on the j-th SOPs, which after mild approximations

discussed in [68], can be modeled according to

zj(k) = h
[

xr(k), xsj (k)
]

+ vj(k) (12)

= ‖rr(k)− rsj (k)‖2 + c · [δtr(k)− δtsj (k)] + vj(k),

where c is the speed of light and vj is the measurement

noise, which is modeled as a discrete-time zero-mean white

Gaussian sequence with variance σ2
j . The measurement noise

of all SOPs is assumed to be uncorrelated. Subsequently,

the covariance matrix R of the measurement noise vector

v , [va, v1, . . . , vm]
T

is given by R , diag
[

σ2
a, σ

2
1 , . . . , σ

2
m

]

.

F. EKF Model

The anchor SOP state xsa is assumed to be known at all

time. Hence, the EKF estimates the state vector defined by

x(k) ,
[

xT

r (k),x
T

s1(k), . . . ,x
T

sm(k)
]T

using the set of measurements given by {z(l)}kl=0, where

z(l) , [za(l), z1(l), . . . , zm(l)]
T

. From (10)–(12), the overall

system equations are given by

x(k + 1) = Fx(k) + Γgr [ur(k)] +Gw(k), (13)

z(k) = h [x(k)] + v(k), (14)

F , diag [Fr,Fs,Fs, . . . ,Fs] , Γ ,
[

ΓT

r 0T

4m×2

]T

,

G , diag [I6×6,Gs,Gs, . . . ,Gs] ,

h [x(k)] , [h [xr(k), xsa(k)] , h [xr(k), xs1(k)] , . . . ,

h [xr(k), xsm(k)]]
T
,

and w(k), defined as

w(k) ,
[

wT

r (k),w
T

clk,s
1
(k), . . . ,wT

clk,sm
(k)
]T

,

is a zero-mean white Gaussian vector with covariance

Q , diag
[

Qr,Qclk,s
1
, . . . ,Qclk,sm

]

.

A standard EKF is implemented based on (13)–(14) to produce

an estimate x̂(k|i) , E

[

x(k)
∣

∣

∣
{z(l)}il=0

]

, for i ≤ k, and an

associated error covariance Σ(k|i).

IV. MULTI-OBJECTIVE MOTION PLANNING STRATEGY

This section defines the motion planning problem and

formulates it as a multi-objective optimization problem.

A. Multi-Objective Motion Planning Problem Definition

Consider a UAV that has been deployed into a GNSS-denied

environment with no a priori knowledge of its own states xr.

The environment consists of one anchor SOP whose states

xsa are fully known for all time and m SOPs whose states
{

xsj

}m

j=1
are unknown. In order to navigate, the UAV fuses

pseudoranges drawn to the SOPs (12) through an EKF to

estimate its own states while simultaneously estimating the

states of the unknown SOPs, as discussed in Section III. The

UAV is tasked with navigating to within a distance d of a

waypoint position rt with probability (1−α), given its EKF-

produced UAV position estimate, denoted r̂r(k|k), and the

associated block of the estimation error covariance, denoted

Σrr
(k|k). Formally, this task is achieved when the following

is satisfied

Pr
[

‖rr(k)− rt‖22 ≥ d2 | r̂r(k|k), Σrr
(k|k)

]

≤ α. (15)
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To navigate to the waypoint and satisfy (15), the UAV

selects a sequence of acceleration inputs ur(k), k = 0, 1, . . ..
A naive strategy is to select these inputs so that the UAV

navigates directly toward the waypoint as fast as possible

without violating velocity and acceleration constraints 7. How-

ever, flying in a straight line in the GNSS-denied environment

considered herein, could cause the UAV to miss the waypoint

or cause filter divergence altogether. This is due to poor

estimability of the UAV’s and environment’s states.

In this paper, a more sophisticated MOMP strategy is devel-

oped, where the UAV prescribes its trajectory by balancing two

objectives: (i) navigating towards the waypoint and (ii) making

strategic maneuvers, which do not necessarily move the UAV

towards the waypoint, in order to reduce the UAV’s position

uncertainty. These objectives will be achieved by formulating a

multi-objective optimization problem, which is discussed next.

B. Cost Function Derivation

To formulate the MOMP strategy as an optimization prob-

lem, three quantities must be defined: (i) a cost function, (ii) an

optimization variable, and (iii) constraints on the optimization

variable. The optimization variable is defined as the input

vector ur of the UAV’s acceleration and heading (cf. 3), and

the constraints are readily obtained from the UAV’s maximum

speed and acceleration ratings (cf. 7). In what follows, three

cost functions reflecting the multiple objectives are defined via

two approaches: (i) probabilistic and (ii) information theoretic.

1) Probabilistic Approach: One possible cost function that

reflects the desired objective to reach the waypoint can be

readily derived from the probability inequality in (15). After

dropping the time argument for compactness of notation,

applying Markov’s inequality to (15) yields

Pr
[

‖rr − rt‖22 ≥ d2 | r̂r,Σrr

]

≤
E

[

‖rr − rt‖22
]

d2

=
tr(Σrr

) + ‖r̂r − rt‖22
d2

,

(16)

where tr (·) denotes the trace of a matrix. Note that the

above inequality assumes that the EKF is unbiased, i.e.,

E [rr − r̂r] = 0. In this case, to satisfy the mission in (15),

one needs to minimize the cost function

JMarkov , tr(Σrr
) + ‖r̂r − rt‖22 (17)

in the hopes that the right-hand side of (16) becomes less than

the desired probability α. The cost function JMarkov explicitly

shows the two objectives the UAV is trying to balance: (i)

mission completion, captured by the term ‖r̂r − rt‖22, which

is minimized when the UAV’s position estimate is at the target,

and (ii) uncertainty reduction, captured by the term tr(Σrr
),

which when minimized, ensures that the UAV’s true position

is as close as possible to the UAV’s position estimate when

the estimate is at the target.

2) Information Theoretic Approaches: Another way to de-

rive a cost function for the MOMP strategy is using infor-

mation theoretic measures. The EKF produces the estimate

r̂r, which, ignoring the effect of nonlinearities and assuming

Gaussian noise, is the conditional mean of rr with the asso-

ciated estimation error covariance Σrr
. Let Nr denote the pdf

of rr conditioned on all the measurements, which is given by

Nr : rr ∼ N (r̂r,Σrr
) , (18)

where N (µ,Σ) denotes the multivariate Gaussian pdf with

mean µ and covariance matrix Σ. Another way to define the

objectives is through a target probability density Nt defined

as

Nt : rr ∼ N
(

rt, ǫ
2I
)

, (19)

where ǫ is a small positive number. Equation (19) is saying

that it is desired that the UAV’s position to be centered at the

target with a small uncertainty. A natural approach to achieve

this is to minimize the distance between the current and target

pdfs. Such distance metrics are commonly used in information

theory, such as the Kullback-Leibler (KL) divergence DKL or

the Wasserstein metric Wp. For Gaussian distributions such as

Nr and Nt, the KL divergence can be expressed as

DKL (Nr‖Nt) =
1

2ǫ2

[

tr (Σrr
) + ‖r̂r − rt‖22

]

− 1

2
[ln det (Σrr

) + 2− 4 ln ǫ] , (20)

and the Wasserstein metric becomes

W2 (Nr,Nt) =
[

tr (Σrr
) + ‖r̂r − rt‖22

]

+ 2ǫ
[

ǫ− tr
(

Σ
1

2

rr

)]

. (21)

Next, define the cost functions

JKL , 2ǫ2DKL (Nr‖Nt)

= JMarkov − ǫ2 [ln det (Σrr
) + 2− 4 ln ǫ] , (22)

and

JW , W2 (Nr,Nt)

= JMarkov + 2ǫ
[

ǫ− tr
(

Σ
1

2

rr

)]

. (23)

Minimizing JKL is equivalent to minimizing DKL (Nr‖Nt) for

any value of ǫ > 0, since ǫ is independent of the optimization

variable ur. Both JKL and JW are explicitly expressed as

JMarkov with the addition of constants and terms penalizing

the difference between the current and target pdfs. However, it

is shown next that for small enough ǫ, all three cost functions

are equal up to a small difference δ.

3) Equivalence of Probabilistic and Information Theoretic

Approaches: It is assumed the mission time is upper-bounded

by κ time-steps. Next, let Ppv(k) denote the covariance matrix

of xpv(k), which can be expressed as

Ppv(k) =

[

Prr
(k) Prrṙr

(k)
PT

rrṙr
(k) Pṙr

(k)

]

.

where Prr
(k) and Pṙr

(k) are the covariance matrices of rr(k)
and ṙr(k), respectively, and Prrṙr

(k) is the cross-covariance.

Moreover, using (5), (6), (7), and the property A � tr (A) I
for any matrix A � 0, Qc(k) may be upper-bounded as

Qc(k) �
(

q̃a + a2r,maxq̃θ
)

I2×2, (24)
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where the right-hand side of the inequality is independent of

time. It follows from (4) and (24) that

Qpv(k) �
(

q̃a + a2r,maxq̃θ
)

[

T 3

3 I2×2
T 2

2 I2×2
T 2

2 I2×2 T I2×2

]

, Q̄pv. (25)

The following lemma establishes an upper-bound on Prr
(k)

for k = 0, 1, . . . , κ.

Lemma IV.1. Consider the system in (3) with Ppv(0) ,

diag
[

P
rr(0),Pṙr(0)

]

≻ 0, then, for k = 0, 1, . . . , κ, the

following holds

Prr
(k) � P̄rr

(k), (26)

P̄rr
(k) , P

rr(0)+k2T 2Pṙr
(0)+

k3T 3

3

(

q̃a + a2r,maxq̃θ
)

I2×2.

(27)

Proof. From (3), the time-evolution of Ppv is obtained to be

Ppv(k)=Fk
pvPpv(0)

(

Fk
pv

)T

+

k−1
∑

j=0

Fk−j−1
pv Qpv(j)

(

Fk−j−1
pv

)T

.

(28)

By expanding (28), using (25), using the following properties

k−1
∑

j=0

j =
k(k − 1)

2
,

k−1
∑

j=0

j2 =
k(k − 1)(2k − 1)

6
,

and looking at the upper diagonal block of the left- and right-

hand sides of (28), (26) is deduced.

Now the following theorem establishes equivalence between

the three cost functions JMarkov, JKL, and JW.

Theorem IV.1. Consider the system (13)–(14), with initial

UAV position and velocity prior covariance Ppv(0), and

assume there exists a positive scalar p> 0 such that

Σrr
≥ p I2×2. (29)

Then, over a finite number of time-steps κ, for any δ > 0,

there exists an ǫ⋆ > 0 such that for 0 < ǫ < ǫ⋆, the following

holds

|JKL − JMarkov| < δ, |JW − JMarkov| < δ. (30)

Proof. The EKF is estimating the posterior estimation error

covariance, denoted by Σrr
(k|k). Given the properties of

Kalman filters, the following inequality holds

Σrr
(k|k) � Prr

(k). (31)

Moreover, from (27), one can see that P̄rr
(k) � P̄rr

(k + 1),
which implies

P̄rr
(k) � P̄rr

(κ). (32)

Let ζ(κ) , tr
[

P̄rr
(κ)
]

. Using the property “A � tr (A) I,”
for a matrix A � 0, and dropping the time argument k for

compactness of notation, the following can be deduced

Σrr
� ζ(κ)I2×2. (33)

The following inequalities can be derived from (33)

|ln detΣrr
| ≤ ϕ, (34)

tr
(

Σ
1

2

rr

)

≤ 2
√

ζ(κ), (35)

where ϕ , max {2 |ln ζ(κ)| , 2 |ln p|}. Subsequently, combin-

ing (22) and (34), using the property of the absolute value, the

following is deduced

|JKL − JMarkov| ≤ δ1(ǫ), (36)

where δ1(ǫ) , ǫ2 (ϕ+ 2 + 4 |ln ǫ|). Similarly, combining (23)

and (35), another inequality is obtained

|JW − JMarkov| ≤ δ2(ǫ), (37)

where δ2(ǫ) , 2ǫ
(

ǫ+ 2
√

ζ(κ)
)

. One can straightforwardly

see that δ1(ǫ) and δ2(ǫ) are strictly increasing functions of

ǫ > 0. Consequently, for some δ > 0, one can calculate

ǫ1 = δ−1
1 (δ), ǫ2 = δ−1

2 (δ),

and define ǫ⋆ , min {ǫ1, ǫ2}. Therefore, for any 0 < ǫ < ǫ⋆,

one can guarantee (30).

In order to illustrate Theorem IV.1, Monte Carlo simula-

tions were performed to demonstrate the established bounds

(36) and (37). A total of 20 Monte Carlo realizations were

generated using the simulation settings tabulated in Table I

and ǫ ≡ 1 × 10−4 and p ≡ 1 × 10−4. The covariance

matrix used to calculate JKL, JW, and JMarkov were generated

based on conditions (26) and (29). At each time-step, the cost

function difference was calculated and is plotted in Fig. 3.

The covariance matrix had a constant lower bound according

to Theorem IV.1 and a time-varying upper bound according to

Lemma IV.1. It can be seen that the derived bounds correctly

limit the difference between JKL and JMarkov and between

JW and JMarkov.
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Fig. 3. Cost functions equivalence based on the Markov inequality, KL
divergence, and Wasserstein metric over time. Illustrated are the difference
between (a) the KL divergence and Markov cost functions and (b) Wasserstein
and Markov cost functions calculated from the randomly sampled covariance
matrix and the established bounds.
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C. MOMP Optimization Problem

Theorem IV.1 implies that for a small enough target co-

variance uncertainty, the three cost functions JMarkov, JKL,

and JW are practically equivalent. Consequently, the MOMP

strategy will adopt the cost function J̄ (ur) , JMarkov,

constrained to the UAV dynamics, namely

minimize
ur

J̄ (ur) (38)

Subject to: (8), (13), (14).

The optimization problem (38) does not specify when the

mission is completed. A stopping criterion is defined in

Subsection IV-D.

It is desired that the UAV be able to solve the optimiza-

tion online on its on-board processor. In order to meet this

requirement, a greedy approach is adopted, i.e., the optimal

control input is computed one step at a time. However, the

optimizer could get stuck at a local optimum in which one of

the two terms in the cost function dominates. It was observed

in simulations that the distance term usually dominates at the

beginning, causing the UAV to fly directly toward the way-

point. Once close to the waypoint, the trace of the estimation

error covariance starts to dominate, causing the UAV to get

stuck flying around the waypoint to minimize its position

estimate’s uncertainty but to no avail. To avoid such behaviors,

the cost function J̄ (ur) is reformulated to become a weighted

sum given by

J(ur) , wJ1[ur(k)] + (1 − w)J2[ur(k)], (39)

where J1[ur(k)] , ‖r̂r(k + 1|k)− rt‖22, J2[ur(k)] ,

tr [Σrr
(k + 1|k + 1)], and the weight w is changed adaptively.

More specifically, J1 is the Euclidean distance between the

UAV’s position estimate and the waypoint, which corresponds

to the objective of navigating towards the waypoint. Further-

more, J2 is the A-optimality criterion applied to the UAV’s

position estimation covariance [32], which corresponds to the

objective of minimizing the UAV’s position uncertainty. Note

that Σrr
(k + 1|k + 1) can be computed at time-step k since

it is independent of the measurements at k + 1. The MOMP

problem is then cast as a greedy motion planning problem to

find the optimal input u∗

r (k), that minimizes J subject to the

dynamics and vr,max and ar,max, formally expressed as

minimize
ur(k)

J(ur) = wJ1[ur(k)] + (1 − w)J2[ur(k)] (40)

Subject to: (8), (13), (14),

where the weight is defined as

w , 1(Σrr , d, α),

where 1(Σrr , d, α) is an indicator function used to switch

between each objective and is discussed in Subsection IV-E.

In the next two subsections, a test is developed as a stopping

criterion for task (15), and the indicator function 1(Σrr , d, α)
is specified.

Note that in practice, a vehicle has constraints on its

acceleration and velocity which will also constrain the turning

radius of the vehicle. Therefore, as the vehicle approaches

the waypoint, it should reduce its velocity in order to make

“tighter” turns to successfully reach the waypoint. To this end,

an adaptive velocity constraint v′r,max is proposed, which is

defined as

v′r,max = min

{

√

‖r̂r − rt‖2 ar,max, vr,max

}

, (41)

which is based on the centripetal acceleration. Adjusting the

maximum velocity according to equation (41) will decrease

the velocity of the UAV, to ensure that the UAV does not

get stuck traversing an infinite loop around the waypoint.

Additionally, (41) is effectively a proportional controller, with

proportionality constant
√
ar,max, which has a realistic effect

of slowing the UAV down as it approaches the waypoint.

Since the cost function is generally non-convex, it was

solved by an exhaustive search-type algorithm, in order to

avoid converging to a local optimum. To this end, the feasible

set of maneuvers at time-step tj was gridded to nj possible

maneuvers. The complexity of evaluating the cost function at

a particular input is O (1) since it is independent of the value

of the input. Consequently, the computational complexity at

a time-step tj will be O (nj). Of course, advanced numerical

optimization solvers can be invoked, which would impact the

corresponding computational complexity.

D. Stopping Criterion

Since the UAV does not have access to its true position rr,

a test to determine if task (15) is satisfied must be formulated

in terms of values the UAV has access to. Specifically, a test is

formulated using the UAV’s EKF-produced position estimation

error covariance Σrr .

Theorem IV.2. Consider an environment consisting of a UAV

that has been deployed into a GNSS-denied environment with

no a priori knowledge of its own states, one anchor SOP

whose states are fully known, m unknown SOPs, and a desired

waypoint position rt. Given the distance tolerance from the

waypoint d, and the specified confidence probability 1 − α.

Then, if

1− F

(

d2

λmax
; n,

n
∑

i=1

b2i

)

≤ α, (42)

holds, then task (15) is satisfied; where F
(

d2

λmax

; n,
∑n

i=1 b
2
i

)

is the cumulative density function (CDF) of a non-central

χ2-distributed random variable with n degrees-of-freedom

and non-centrality parameter
∑n

i=1 b
2
i , evaluated at d2

λmax

,

λmax , max
i

λi(Σrr) is the maximum eigenvalue of Σrr , n is

the dimension of the UAV position states, and b = [b1 . . . bn]
⊺

is given by

Σrr
= UΛU⊺

b , Λ−
1

2U(r̂r − rt).

Proof. The proof will show that (42) is sufficient to satisfy

(15). The Euclidean distance term ‖rr − rt‖22 in (15) can be
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expressed as

‖rr − rt‖22 = (r̂r + r̃r − rt)
⊺(r̂r + r̃r − rt)

= (r̂r + r̃r − rt)
⊺U⊺Λ−

1

2ΛΛ−
1

2U(r̂r + r̃r − rt)

= (y + b)⊺Λ(y + b)

=

n
∑

i=1

λi(yi + bi)
2,

(43)

where λi is the ith eigenvalue of Σrr , y , Λ−
1

2Ur̃r =
[y1 . . . yn]

⊺
is the estimation error aligned to the coordinates

defined by the eigenvectors and eigenvalues of the estimation

error covariance matrix; therefore, y ∼ N (0n×1, I2×2).
Equation (43) may be upper bounded by replacing all λi with

λmax, which gives

‖rr − rt‖22 =

n
∑

i=1

λi(yi + bi)
2 ≤ λmax

n
∑

i=1

(yi + bi)
2. (44)

Therefore, an upper bound for the probability in (15) may be

established by replacing the Euclidean distance term in (15)

by the right-hand side of (44), which gives

Pr
(

‖rr − rt‖22 ≥ d2
)

≤ Pr

(

λmax

n
∑

i=1

(yi + bi)
2 ≥ d2

)

.

(45)

Note that λmax

∑n

i=1(yi + bi)
2 is non-central χ2-distributed

with n degrees-of-freedom and non-centrality parameter
∑n

i=1 b
2
i , yielding the probability

Pr

(

λmax

n
∑

i=1

(yi + bi)
2 ≥ d2

)

= 1−F

(

d2

λmax
; n,

n
∑

i=1

b2i

)

.

(46)

Substituting the right-hand side of (46) into (45) yields

Pr
(

‖rr − rt‖22 ≥ d2
)

≤ 1− F

(

d2

λmax
; n,

n
∑

i=1

b2i

)

. (47)

If (42) holds, substituting it into (47) yields (15).

E. Indicator Function Selection

The MOMP strategy needs a mechanism to balance the

objective functions J1 and J2. One way to balance these

objectives is to use a function of the uncertainty of the UAV’s

position estimate as an indicator. If the uncertainty becomes

too large, the UAV should focus on decreasing the uncertainty

until it becomes small enough so that satisfying task (15)

is feasible. Then, the UAV may switch back to navigating

towards the waypoint. To make this happen, the indicator

function 1(Σrr , d, α) is set as a necessary condition for (42)

to be satisfied. This condition is established in the following

lemma.

Lemma IV.2. A necessary condition for criterion (42) to be

satisfied is

ηαλmax − d2 ≤ 0, (48)

where ηα , F−1(1−α;n, 0) is the value of the inverse CDF of

a χ2-distributed random variable with n degrees-of-freedom,

evaluated at 1−α, and n is the dimension of the UAV position

states.

Proof. The proof will proceed by contradiction. Assume that

(48) is not satisfied, i.e., ηαλmax − d2 > 0. Then, from the

definition of ηα, the following holds

d2

λmax
< F−1(1− α;n, 0). (49)

Since χ2 CDFs are monotonically increasing, evaluating a n

degrees-of-freedom χ2 CDF at both sides of (49) and moving

some terms yields

1− F

(

d2

λmax
; n, 0

)

> α. (50)

Note that the CDF of a n degrees-of-freedom noncentral χ2-

distribution decreases as the non-central parameter increases

[69], i.e.,

F

(

d2

λmax
; n, c1

)

≥ F

(

d2

λmax
; n, c2

)

, 0 ≤ c1 < c2, (51)

where c1 and c2 are the non-central parameters. By setting

c1 = 0 and c2 =
∑n

i=1 b
2
i ≥ 0, where bi are defined according

to Theorem IV.2, then (51) implies that

1− F

(

d2

λmax
; n, 0

)

≤ 1− F

(

d2

λmax
; n,

n
∑

i=1

b2i

)

. (52)

Combining (50) and (52) yields

1− F

(

d2

λmax
; n,

n
∑

i=1

b2i

)

> α,

which is in contradiction with (42).

According to Lemma IV.2, the indicator function

1(Σrr , d, α) is selected to be

1(Σrr , d, α) ,

{

1, if ηαλmax − d2 ≤ 0,

0, else
. (53)

The MOMP strategy is summarized in Fig. 4.

V. SIMULATION RESULTS

This section presents simulation results of a UAV tasked

with reaching a waypoint in a GNSS-denied environment, but

pseudorange measurements made to unknown SOPs. Three

greedy motion planning strategies to prescribe the UAV’s

trajectory are compared: (i) naive approach, where the UAV

moves directly to the waypoint without considering the quality

of its position estimate or knowledge of the environment, (ii)

MOMP (38), which balances two objectives: 1) minimizing

the distance to the waypoint and 2) minimizing UAV position

uncertainty, and (iii) adaptive MOMP (40), which is similar to

(ii) with the addition of weights to the objectives so that neither

one dominates. A Monte Carlo study is conducted using 500

runs to compare each strategy by evaluating the average time to

reach the waypoint, final root mean squared error (FRMSE) of

the UAV’s estimated position, final root mean squared distance

(FRMSD) towards the waypoint at the end of the mission, and

success rate of reaching the waypoint. If the UAV did not reach

the waypoint within 200 seconds, the mission was stopped and

recorded as failure.
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A. Simulation Settings

Consider an environment comprising four SOPs and a speci-

fied waypoint. The UAV is deployed into an uncertain position,

has minimal knowledge of the SOPs in the environment,

and is tasked with reaching the known waypoint position

rt. The UAV’s uncertain deployment position is captured by

initializing the EKF with a state estimate, denoted x̂r(0|− 1),
with a large estimation error covariance Σr(0| − 1). One

anchor SOP is available, and the remaining three SOPs are

unknown, i.e., their initial state estimates x̂sj (0| − 1) have

initial estimation error covariances Σsj (0| − 1) ≻ 04×4,

j = 1, 2, 3.

The Monte Carlo analysis was conducted over 500 runs.

For each run, the EKF was initialized with different initial

estimates and used different realizations of process and mea-

surement noise. The EKF and the simulation settings are

tabulated in Table I. For each Monte Carlo, run the naive,

MOMP, and adaptive MOMP strategies were employed to

prescribe the UAV’s trajectory according to the closed-loop

procedure illustrated in Fig. 4. For each run using the naive

strategy, the mission was declared complete by the UAV by

checking if ‖r̂r − rt‖ ≤ 5 m, using d from Table I. For each

run using the MOMP strategies, the mission was declared

complete according to the stopping criterion described in 4. It

is important to note that the non-adaptive MOMP strategy did

not declare mission success for any of the runs.

B. Naive and MOMP Strategies Comparison Results

The true and EKF-estimated UAV trajectories, the corre-

sponding final 95th-percentile estimation uncertainty ellipse,

the circle around the waypoint with distance d, and the true

and estimated SOP positions for an example run is illustrated

in Fig. 5, Fig. 6, and Fig. 7 for the naive, MOMP, and

adaptive MOMP strategies, respectively. Table II tabulates the

average time-duration to reach the waypoint, the UAV’s posi-

tion FRMSE, the UAV’s FRMSD, and the mission completion

success rate for the 500 Monte Carlo runs for each strategy. If

the UAV did not reach the waypoint within 200 seconds, the

mission was stopped and recorded as failure. The time duration

to reach the waypoint is computed by recording the elapsed

time from mission start to the time the UAV declares the

TABLE I
SIMULATION SETTINGS

Parameter Value

rt [400, 200]T

xr(0) [0, 0, 0, 0, 100, 10]T

xsa [100, 250, 10, 0.1]T

xs1
[200,−50, 20, 0.2]T

xs2
[300, 300, 30, 0.3]T

xs3
[−50, 150, 40, 0.4]T

x̂r(0 | −1) ∼ N [xr(0),Σr(0 | −1)]
x̂sj (0 | −1) ∼ N [xsj ,Σsj (0 | −1)], j = 1, 2, 3
Σr(0 | −1) (5 × 103) · diag[1, 1, 10−2, 10−2, 1, 10−1]
Σsj (0 | −1) (103) · diag[1, 1, 1, 10−1], j = 1, 2, 3
{h0,r, h−2,r} {2 × 10−19, 2× 10−20}

{h0,sa , h−2,sa} {8× 10−20, 4× 10−23},

{h0,sj , h−2,sj } {8× 10−20, 4× 10−23}, j = 1, 2, 3

{q̃a, q̃θ} {0.1 (m/s2)2, 0.004 (rad)2}
R diag[400, 500, 600, 700] m2

{vr,max, ar,max} {20 m/s, 5 m/s2}
T 0.1 s

1− α 95%
d 25 m

mission complete. The UAV’s position FRMSE is computed

by averaging the final position estimation error squared over

all runs, and the UAV’s FRMSD is computed by averaging the

square of the final distance to the waypoint over all the runs.

The success rate is computed by dividing the number of runs

the UAV’s true position was within a distance of d from the

waypoint by the total number of runs.

TABLE II
MOTION PLANNING PERFORMANCE

Strategy Time [s] FRMSE [m] FRMSD [m] Success [%]

Naive 27.50 77.04 77.19 36.00
MOMP 200.00 210.38 214.15 32.40

Adaptive
MOMP 91.31 18.95 19.32 95.20

The following conclusions can be drawn from these re-

sults. First, the non-adaptive MOMP strategy performed the

worst in all metrics. The mean time to completion is nearly

200 seconds, the entire simulation run. The distance term

dominates initially causing the UAV to go straight to the

target. Once close to the target, the trace term becomes more

dominant, causing the UAV to fly around in order to reduce

its position uncertainty before heading back to the target.

However, because of the poor estimability around the target,

the UAV cannot bring its position uncertainty down in the

allotted time. In fact, it was observed that the covariance

matrix in the EKF tends to grow as the UAV is flying around

due to the poor SOP geometry around the target. This causes

the UAV to not complete the mission, and explains the large

FRMSE and FRMSD values. The FRMSD and the FRMSE of

the proposed adaptive MOMP strategy was significantly lower

than the naive and non-adaptive MOMP approaches, even if

the timeout runs are removed. Second, the naive approach

declared an average mission complete time that was about 60

seconds sooner than the adaptive MOMP strategy. However,

only about 30% of these missions were actually successful.

Note that in some runs that used the naive strategy, the
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Fig. 5. Results for the naive motion planning strategy. Illustrated are the
true and estimated UAV trajectories, true and estimated SOP positions,
the waypoint position, the corresponding uncertainty ellipse, and the target
perimeter (specified distance d to the waypoint). It can be seen that while
the UAV actually fails to reach the target perimeter (ground truth trajectory)
despite its estimate indicating otherwise.

Fig. 6. Results for the MOMP strategy. Illustrated are the true and estimated
UAV trajectories, true and estimated SOP positions, the waypoint position, the
corresponding uncertainty ellipse, and the target perimeter. The zoomed box in
the bottom right illustrates the scenario mentioned in Subsection IV-C, where
the distance term in the cost function dominates at the beginning, causing
the UAV to fly directly toward the waypoint. Once close to the waypoint, the
trace of the estimation error covariance starts to dominate, causing the UAV
to get stuck flying around the waypoint to minimize its position estimate’s
uncertainty but to no avail.

filter diverged and the UAV never reached the waypoint,

but the filter reported mission completed. This is due to

the naive approach failing to consider the uncertainty in the

UAV’s position estimate, causing the UAV to declare mission

complete when the actual position is unacceptably far from

the waypoint. This can be seen in Fig. 5, where the UAV

position estimate had reached the waypoint, whereas the true

UAV position was further than a distance d. In contrast,

the UAV spent more time in the adaptive MOMP strategy

performing maneuvers around the SOPs before moving to

the waypoint, as is illustrated in Fig. 5. The zoomed box

of Fig. 7 shows how the MOMP strategy ensures that the

uncertainty ellipse corresponding to 1−α is contained within

the specified distance d from waypoint before the mission is

declared complete. Moreover, this paper does not assume prior

knowledge of the UAV’s position, velocity, or clock error (bias

and drift). Therefore, the initial errors may be very large. This

is accounted for by selecting a large initial uncertainty. As the

UAV starts moving, its state becomes observable, allowing

the EKF to correct some of the large initial errors. As a

result, the estimate rapidly converges to the true trajectory’s

neighborhood, as apparent from Figs. 5–7.

Fig. 8 shows, on one hand, how the indicator function

condition (48) indicates adaptive MOMP switching costs to

balance information gathering and reaching the waypoint.

On the other hand, without the indicator function, the naive

and non-adaptive MOMP never meet condition (48), which

is necessary for (42), leading to poor performance. These

findings demonstrate the tradeoff between mission duration

and mission success and stress the importance of considering

the UAV’s position estimation uncertainty when prescribing

the UAV’s trajectory.

Fig. 7. Results for the adaptive MOMP strategy. Illustrated are the true and
estimated UAV trajectories, true and estimated SOP positions, the waypoint
position, the corresponding uncertainty ellipse, and the target perimeter. The
zoomed box in the bottom right illustrates that the final position uncertainty
of the UAV is contained within the target perimeter (i.e., within specified
distance d to the waypoint).

VI. EXPERIMENTAL RESULTS

This section presents a field experiment demonstrating a

UAV navigating to a waypoint using pseudoranges measure-

ments from cellular SOPs. The naive and adaptive MOMP

strategies are employed and the resulting performance of each

strategy is compared.
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Fig. 8. Indicator function condition (48) for the three strategies: Naive,
MOMP, and adaptive MOMP. Illustrated are the values of the indicator
function condition over time and the dotted line is the threshold of the
switching cost function.

A. Scenario Description

In order to conduct a safe experiment, a post-processing ap-

proach was adopted. To this end, an environment was first built

in simulation based on the real field experimental environment.

Two simulations were run in this created environment, which

corresponded to: (i) naive and (ii) adaptive MOMP. For each

strategy, the UAV was initialized in the same location and

was tasked with reaching the same waypoint position. One

cellular transmitter was allocated as an anchor SOP and two

SOPs were set to be unknown. Next, the produced trajectories

for each motion planning strategy were flown manually by a

piloted UAV. The SOPs had comparable height, at which the

UAV was flown. The piloted UAV true trajectories will serve

as the ground truth prescribed trajectories for each strategy. To

perform data association, an offline technique was performed,

in which the profiles of the pseudoranges were compared with

the distance profiles to each SOP. Finally, the pseudoranges

were fused through an EKF for each motion planning strategy

and the resulting mission performance was compared in terms

of mission duration, UAV position RMSE, and final distance

to the waypoint position.

B. Experimental Setup

An Autel X-Star Premium UAV was equipped with an Ettus

universal software radio peripheral (USRP)-E312R to sample

cellular CDMA signals. The USRP was tuned to a carrier

frequency of 882.75 MHz, which is commonly used by the

cellular provided Verizon Wireless. Signals from three cellular

SOPs were acquired and tracked via the Multichannel Adap-

tive Transceiver Information eXtractor (MATRIX) software-

defined received (SDR) [70], producing pseudoranges to all

SOPs for the entire duration of the flight. A ground truth

trajectory for the UAV was parsed from the UAV’s onboard

navigation system log file, which records position from its

integrated GNSS-aided inertial navigation system (INS). The

anchor SOP’s clock was solved for off-line by subtracting the

true distance from the SOP’s pseudoranges. The experiment

was conducted in Colton, California, USA. The experimental

EKF settings are tabulated in Table III, and the experimental

setup is shown in Fig. 9.

C. Results

The prescribed and estimated UAV trajectories for the naive

and adaptive MOMP strategies are illustrated in Fig. 10.

USRP E312

GPS antenna

Cellular antenna

Autel X-Star
premium UAV

Fig. 9. Experimental setup.

TABLE III
EXPERIMENT SETTINGS

Parameter Value

rt [−21.27,−334.5]T

xr(0) [−1.6617,−26.98, 0, 0, 0, 0]T

xsa [−3762,−2496, 0,−0.8302]T

xs1
[765.4, 4927, 0,−0.2814]T

xs2
[380.7, 1611.8, 0,−1.0416]T

x̂r(0 | −1) ∼ N [xr(0),Σr(0 | −1)]
x̂sj (0 | −1) ∼ N [xsj ,Σsj (0 | −1)], j = 1, 2
Σr(0 | −1) (104 · diag[1, 1, 10−2, 10−2, 10−4, 10−6])
Σsj (0 | −1) (103 · diag[1, 1, 10−3, 10−5]), j = 1, 2
{h0,r, h−2,r} {2 × 10−19, 2× 10−20}
{h0,sj , h−2,sj } {8× 10−20, 4× 10−23}, j = 1, 2

{q̃a, q̃θ} {0.1 (m/s2)2, 0.004 (rad)2}
R diag[400, 400, 400] m2

{vr,max, ar,max} {12 m/s, 3 m/s2}
T 0.1 s

1− α 95%
d 50 m

The resulting mission performance is tabulated in Table IV.

From this table, it can be concluded that using the adaptive

MOMP strategy to prescribe the UAV trajectory to navigate

to a waypoint resulted in a smaller RMSE and final distance

to the waypoint compared to using the naive strategy. Note

that on one hand, although the naive strategy prescribed the

shortest path and declared the mission successful, the UAV’s

position estimate had large errors, causing the UAV to be

unacceptably far from the waypoint, which in turn translates

to mission failure. The large errors are attributed to poor prior

knowledge of the SOPs in the environment. On the other

hand, the adaptive MOMP strategy prescribed a trajectory

that performed maneuvers around the environment, which

reduced the uncertainty of the SOPs in the environment. The

reduction of the uncertainty of the SOP’s states simultaneously

reduces the uncertainty of the UAV’s position states through

correlation. Eventually, when the UAV’s position estimation

error and error covariance are small enough, the UAV switches

its objective to navigating towards the waypoint, which is

successfully achieved since the filter errors are small.

VII. CONCLUSION

This paper developed a MOMP strategy for a UAV navigat-

ing to a specified waypoint in a GNSS-denied environment.
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Prescribed adaptive MOMP trajectory
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Waypoint

Unknown
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Fig. 10. Experimental environment and UAV trajectories: prescribed (cyan
and blue) and estimated (pink and red) for the naive strategy and the adaptive
MOMP strategy. Map data: Google Earth.

TABLE IV
SOLUTIONS PERFORMANCE

Trajectory Time [s] 2-D RMSE [m] 2-D Final Distance [m]

Naive 57.00 40.23 77.44
Adaptive
MOMP 268.9 23.26 12.246

The UAV was required to reach the waypoint within a specified

distance with a specified probability. The UAV only had

access to pseudoranges from unknown SOPs, which were

used to simultaneously estimate the UAV’s states along with

the unknown SOPs’ states while the UAV navigated to the

specified waypoint. The MOMP cost functions were derived

in three different approaches: using the Markov inequality, the

KL-divergence, and the Wasserstein metric. It was shown that

all cost functions are equivalent under certain conditions, and

the resulting cost function balanced two objectives: (i) navigate

to the waypoint and (ii) reduce UAV position estimation uncer-

tainty. Adaptive weights were introduced to the MOMP cost

function to avoid the algorithm getting stuck at local minima.

An indicator function was selected, which switches between

the two objectives using a function of the UAV’s position

estimation error covariance. A simple test was derived using

the UAV’s position estimation error covariance to determine

if the UAV had reached the waypoint within the specified

distance and a specified confidence probability. Monte Carlo

simulations and experimental results demonstrated that the

proposed MOMP strategy significantly reduces the UAV’s po-

sition RMSE and the final distance to the waypoint compared

to a naive approach, in which the UAV moves directly to the

waypoint. The adaptive MOMP strategy also outperformed the

naive strategy in terms of mission success rate.

The MOMP strategy studied in this paper requires an indica-

tor function to switch between the two components in the cost

function, when using greedy motion planning. Future work

can extend this framework to adaptive weighting of the two

components of the cost function or adopt a receding horizon

trajectory optimization strategy to consider both components

at the same time. In addition, the cost function of MOMP

is generally non-convex, which upon employing numerical

optimization solvers, could result in convergence to local

optima, in addition to requiring involved computations which

could be infeasible for real-time implementations. Applying

a convex information gathering cost (e.g., innovation-based

metrics [32]) to MOMP could be the subject of future work.
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